Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## New compounds $CuCr_{1.5}Sb_{0.5}S_4$ and its solid solution with $CuCr_2S_4$ D.A. Saifullaeva, Sh. Soliva, M. Malikov, Sh. Urakov 703004, 15 University blvrd, Samarkand, Republic of Uzbekistan New compounds with spinel structure $CuCr_{1.5+x}Sb_{0.5-x}S_4$ (0 < x < 0.3) were obtained and studied in detail. All the compounds are non-degenerate semiconductors. It should be noted that the natural florensovite contains also up to 26% Zn, So it is rather a solid solution between CuCr_{1.5}Sb_{0.5}S₄ and ZnCr₂S₄. We managed to prepare a synthetic analogue of florensovite CuCr_{1.5}Sb_{0.5}S₄ and its solid solution with CuCr₂S₄. A compound CuCr_{1.5}Sb_{0.5}S₄ is especially interesting because it contains pentavalent Sb which was not observed in chalcospinels before. As an interatomic distance (Sb-S)₆ in octahedral is equal to the invariant characteristic distance β -Sb⁵⁺ =2.538 Åwe get this conclusion. The former one is calculated from the lattice parameter a=10.018 Åand taulated β -Cr³⁺ =2.411 Åand α -Cu¹⁺=2.279 Å. No ertrareflections due to possible 1:3 ordering in octahedral sites were observed for this composition. Powder samples of CuCr_{1.5}Sb_{0.5}S₄ were synthesized from elements in the elements in the evacuated quartz vails (5500°C, 48 h). The compounds 0 < x < 0.1 were found to have the magnetic properties characteristic for antiferromagnets. Compounds 0.2<x<0.3 have a spontaneous magnetization, with the Curie point of the compound with x=0.3, i.e. T_c =334 K, being higher than room temperature. The re-entrant spin glass transition is observed in the compound with x=0.2